Suppression of L-type voltage-gated calcium channel-dependent synaptic plasticity by ethanol: analysis of miniature synaptic currents and dendritic calcium transients.

نویسندگان

  • Adam W Hendricson
  • Mark P Thomas
  • Melanie J Lippmann
  • Richard A Morrisett
چکیده

Intoxicating concentrations of ethanol inhibit N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation, an interaction thought to underlie a major component of the central nervous system actions of ethanol. Another form of synaptic potentiation involving activation of L-type dihydropyridine-sensitive voltage-gated calcium channels (VGCCs) has been described, but very little information concerning ethanol effects on VGCC-dependent synaptic potentiation is available. Here, we assessed ethanol effects on VGCC-dependent synaptic potentiation using whole cell patch-clamp recordings of alpha-amino-3-hydroxy-5-methyl-4-soxazolepropionic acid (AMPA) receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in area CA1 of the rat hippocampus. No potentiation was observed in artificial cerebrospinal fluid containing 2 to 3 mM Ca2+, but marked potentiation of mEPSCs was consistently observed in 4 mM Ca2+ and with patch pipettes containing an ATP-regenerating system. This potentiation was insensitive to the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid, whereas it was completely blocked the L-type VGCC antagonist nifedipine. Potentiation was also blocked dose dependently by bath application of ethanol (25-75 mM), which had no effect on baseline mEPSC amplitude or frequency. The synaptic potentiation involved enhancement of both presynaptic and postsynaptic components because significant increases in both the frequency and amplitude of AMPA mEPSCs were observed. Ethanol inhibition of VGCC-dependent synaptic potentiation seemed to occur at the induction step because both the increases in mEPSC frequency and amplitude were affected. To address that question more directly, we used fluorescent imaging of synaptically evoked dendritic calcium events, which displayed a similarly marked ethanol sensitivity. Thus, ethanol modulates fast excitatory synaptic transmission by inhibiting the induction of an NMDA receptor-independent form of synaptic potentiation observed at excitatory synapses on central neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 307 2  شماره 

صفحات  -

تاریخ انتشار 2003